Stochastic Cooling at Fermilab

Dave McGinnis
Workshop on Beam Cooling and Related Topics
Bad Honnef, Germany
May 16, 2001

Antiprotons at FNAL

- Antiprotons are used in the TEVATRON Collider
- Antiproton Production Rate
 - □ Run 1b 5-7x10¹⁰/hour
 - ☐ Run 2a 15-20x10¹⁰/hour
 - □ Run 2b 40-60x10¹⁰/hour
- Antiprotons are produced by striking a Nickel target with a 120 GeV proton beam
 - \Box 5x10¹² protons/pulse (Run 2a)
 - \square Pulse length = 1.6 uS
 - \Box Cycle time = 1.5 Sec
 - \square r.m.s size = 0.15 mm
- 8 GeV antiprotons are collected by a Lithium Lens
 - □ 750 T/m
 - ☐ 1 cm radius
 - □ 15 cm long

FNAL Antiproton Source

Antiprotons at FNAL

- 8 GeV antiprotons are injected into the Debuncher Ring
 - \Box Admittance = 25 π -mm-mrad
 - **☐** Momentum aperture = 4%
 - \Box $\eta = 0.006$
 - □ Debunching reduces the moment spread to 0.3%
 - > 5.0 MV @ 53 MHz (h=90)
 - ➤ Bucket Height = 230 MeV
 - $ightharpoonup T_{synch} / 4 \sim 40 turns$
 - ☐ In 1.5 secs (Run 2a), pre-cooling in the Debuncher reduces
 - \triangleright Transverse emittance from 25 π -mm-mrad (95% full width) to 4 p-mm-mrad
 - ➤ Mometum spread from 0.3% to 0.08%

Antiprotons at FNAL

- The pre-cooled antiprotons are injected into the Accumulator
 - \square Aperture = 8 π -mm-mrad
 - **☐** Momentum aperture ~ 2%
 - \square $\eta = 0.012$ (Run 2a) ($\eta = 0.022$ Run 1b)
- The beam is moved from the injection orbit to the stacking orbit with a RF system
 - □ h=84 (53 MHz)
 - □ bucket area of 0.27 eV-sec
- The beam is momentum stacked into the core with the StackTail momentum cooling system
 - **□** Exponential gain slope ~ 12 MeV
 - ☐ Momentum aperture of Stacktail system = 0.7%

Accumulator Orbits

Antiprotons at FNAL

- Antiprotons are accumulated and cooled into the Accumulator Core
 - ☐ Run 2a without the Recycler
 - ➤ Accumulate 150x10¹⁰ antiprotons
 - ➤ Send all the antiprotons to the TEVATRON via the Main Injector every 8-10 hours
 - ☐ Run 2a with the Recycler
 - ➤ Accumulate 20-40x10¹⁰ antiprotons
 - ➤ Send all the antiprotons in the Accumulator to the Recycler every 1-2 hours
 - ➤ Time-stack antiprotons in the Recycler using barrier buckets and stochastic cooling.

Debuncher Stochastic Cooling

- Original design for Run 2a Upgrade
 - ☐ Keep 2-4 GHz bandwidth using stripline electrodes
 - ☐ Cool pickups to 10 K
 - \square Plunge arrays from 24 π -mm-mrad to 5 π -mm-mrad
- Upgrade for Run 2b
 - ☐ During Run 2b the increase in the number of antiprotons/pulse should increase by a factor of 3.5 over Run 2a
 - ➤ Slip Stacking 1.8x
 - ➤ Increased lens gradient 1.3x
 - ➤ Increased collection aperture 1.5 x
 - ☐ With this increase of antiprotons/pulse, a 2-4 GHz system would become bandwidth limited

Binary Combining of Planar Loops

- Many low sensitivity broadband loops are combined in binary arrays to form a broadband array.
 - ☐ Binary combiner boards can only work if there are no waveguide modes in the beam pipe.
 - ☐ Combiner boards insertion loss increases dramatically as the frequency is increased
 - ➤ More levels of combining because more electrodes / length
 - ➤ Line loss / length also increases with frequency

Slotted Slow Wave Structure

Slotted Slow Wave Structure

Slotted Slow Wave Structure

- Slots carved in a waveguide wall will slow down the <u>phase</u> velocity of a wave in the waveguide.
 - ☐ The reduction in phase velocity is a function of the slot length and width and the spacing between slots.
 - ☐ The coupling of the slots to the beam is proportional to the slot length.
- When the reduced phase velocity of the waveguide matches the beam velocity, the coupling of the slots will add constructively.
- In this slow-wave mode,
 - ☐ The gain of the array is proportional to the number of slots. (as compared to a binary combiner board where the gain is proportional to the square root of the number of slots.)
 - ☐ The bandwidth of the array is inversely proportional to the number of slots.
- This is similar to the 8-10 GHz CERN design of the slow wave ridged pickup array used for bunched beam cooling in the SPS.

Narrow Band Channels

- For optimum sensitivity and array length, the 4-8 GHz band is broken up into 4 kicker bands and 8 pickup bands
- Each slot array is narrowband (< 1.0 GHz) but tuned to a separate center frequency

Pickup Bands

Pickup Bands

Simple schematic of components in a single band.

 Using two pickup bands for every kicker band eliminates a lossy stripline combiner inside the pickup cryogenic vacuum tank but requires narrowband front-end filters to reduce noise power overlap

Transversal Filter Response

4-8 GHz Debuncher Stochastic Cooling System

- 4-8 GHz of Bandwidth
 - 8 Narrowband Pickup channels
 - □ 4 Narrowband Kicker Channels
- Physical front end temperature = 10K
- Front end microwave noise temperature ~ 30K
- Pickup and kicker antenna arrays
 - \square Fixed 40 π mm-mrad, slot coupled, slow wave, waveguide arrays
- Kicker Power
 - ☐ Transverse 4 TWT's per kicker band at 150 Watts/TWT
 - ☐ Momentum 8 TWT's per kicker band at 150 Watts/ TWT
 - ☐ Total Power = 9600 Watts

Projected Debuncher Cooling Performance

Measured Longitudinal Signal to Noise

Measured Beam Power Signal to Noise (Normalized to 10E+06 Particles)

Measured Longitudinal Pickup Impedance

Measured Vertical Sum Mode Pickup Response (Effective Temperature = 30K)

Calculated Longitudinal Impedance

Calculated Vertical Sum Mode Pickup Response

Moment Methods for Excited Slot Coupled Waveguides

Reciprocity for Kicker Impedance

$$\begin{split} & \oiint_{S_o} (\vec{E}^p \times \vec{H}^k - \vec{E}^k \times \vec{H}^p) \bullet \; \hat{n} dS = \iiint_v (\vec{H}^k \bullet \vec{M}^p - \vec{E}^k \bullet \vec{J}^p) dv \\ & \vec{J}^p = \hat{y} \frac{i_b}{2} \delta(x - x_b) \delta(y - y_b) e^{-j\kappa z} \\ & \vec{M}^p = \hat{x} \eta \frac{i_b}{2} \delta(x - x_b) \delta(y - y_b) e^{-j\kappa z} \end{split}$$

Difference Mode Theory and Calculations

Sum Mode Theory and Calculations

Debuncher Bands 3 & 4 Kicker Tanks

Debuncher Bands 3 & 4 Kicker Tanks

Debuncher Cryogenic Pre-Amp

Debuncher Cooling Rates

$$\tau = 2.5 \text{ sec}$$

Debuncher Momentum Cooling

 Accumulator longitudinal Schottky signal on the Injection orbit with Debuncher Momentum Bands 1 & 2 Cooling on/off

Debuncher Band 1 Beam Transfer Function Measurement

Cooling System: DEB VERTICAL BAND 1
Measurement Type: BETATRON BOTH
Record Number: 25
Beam Current: .02878 mA
Bandwidth (MHz) 0.396007
Phase Delay (pSec) -2372.51
Phase Offset (Deg) 180.0
Search Range (pSec) 100.0
Search Resolution (pSec) 1.00

Accumulator StackTail Momentum Cooling System

$$\Phi_0 = \frac{|\eta|}{4} \frac{W^2}{f_0} \frac{E_d}{pc} \frac{1}{\ln(f_{max}/f_{min})}$$

2-4 GHz StackTail Momentum System

- 2-4 GHz of Bandwidth
- Physical front end temperature = 80K
- Front end microwave noise temperature ~ 100 K
- Planar Loop pickup arrays with stripline binary combiners
 - □ +16 MeV 256 electrodes
 - □ -4 MeV 48 electrodes
 - □ -23 MeV 16 electrodes
- Planar Loop kicker arrays with microstrip binary combiners
- Every 8 electrode pair is powered by a single TWT
- 32 TWTs 256 electrode pairs

StackTail Frequency Response

Stacktail Beam Transfer Function Response

Stacktail Pickup tanks

 Stacktail pickup arrays are planar loops but with stripline combiner boards for low loss and low crosstalk

Stacktail Pickup Tanks

Stacktail Pickup Tanks

Stacktail Kicker Tanks

 Stacktail planar loop 1-2 GHz circuit board was replaced with already designed 2-4 GHz board

Stacktail Kicker Tank

Accumulator StackTail Upgrade

- Bandwidth increase from 1-2 GHz (Run 1) to 2-4 GHz
 - ☐ Microwave components (TWT's, hybrids, etc. are available in octave bandwidths)
- Exponential gain slope E_d (determined by pickup aperture) kept constant.
 - ☐ If too small low stacking rate
 - ☐ If too large large momentum aperture
- \bullet η reduced by a factor of two (from 0.022 to 0.012)
 - ☐ Zero's in the gain response of the Stacktail system are formed by correlator notch filters.
 - ☐ The width of the Schottky bands increase with higher frequency
 - ☐ The large phase slope introduced by the notch filters will cause the Stacktail system to be unstable if the Schottky bands become too wide.

Accumulator Lattice Upgrade

- Goal of the upgrade was to reduce η from 0.022 to 0.012 for Accumulator Stacktail stochastic cooling system stability
- γ_t was increased from 5.41 to 6.52 by decreasing the dispersion in the B7 bend magnets
- Lattice Modifications
 - ☐ Individual shunt circuits for all 6 sectors were added to Q3, Q6, Q8, Q10, Q11, Q14 quadrupoles.
 - ☐ Six new large quads, Q14, for the high dispersion triplet were made.
 - ☐ The current capacity of the shunt circuits for the focusing (QSF1) and defocusing (QSD) busses was increased from 5 to 20A
 - ☐ Two Skew sextupoles to compensate the LQ14s were built

Accumulator Lattice Upgrade Dispersion Function

Calculation

Measurement

Transverse Heating of the Accumulator Core by the Stacktail

- For a faster rep. rate, the Stacktail gain must be increased to move the beam off the ARF1 drop-off point faster.
- The StackTail kickers have a certain amount transverse kick due to imperfections.
- Different from Run 1, this transverse kick is dominated by a microwave mode at 3.2 GHz with a Q of 50.
- This kick will heat the Accumulator core and must be compensated

Cross-Talk between the Stacktail and the Core Momentum Systems

- In Run 1, the Stacktail system at 1-2 GHz did not overlap the core momentum system at 2-4 GHz
- In Run 2, The Stacktail system now completely overlaps the core 2-4 GHz momentum system
- These systems "talk" to each other via the beam severely limiting the stability of the systems.

Core 4-8 GHz Betatron Cooling

- The arrays are fabricated with planar loops.
- Beam transfer function measurements show a large gain slope across the band
 - ☐ Usable bandwidth < 1 GHz.
 - ☐ Equalizers will severely limit the dynamic range of the cooling systems.
- The gain slope is due mostly to the pickups and kickers.

Planar Loop Signal to Noise Measurements

4-8 GHz Planar Loop

2-4 GHz Planar Loop

Planar Loop Signal to Noise Measurements

Recycler Cooling

- The cooling systems are fabricated with 100 Ω planar loops
- The momentum systems use filter cooling.
 - ☐ The dispersion in the Recycler is small (~2m)
 - ☐ The upper frequency of the cooling system is limited by bad mixing
 - ☐ There are 2 momentum bands for extra bandwidth

Tank	Type	Plane	Center	Bandwidth	No.
			Freq		Electrodes
			(GHz)	(GHz)	
1	Momentum	Horizontal	0.75	0.5	8
2	Momentum	Vertical	0.75	0.5	8
3	Momentum	Horizontal	1.5	1	16
4	Momentum	Vertical	1.5	1	16
5	Betatron	Horizontal	3	2	32
6	Betatron	Vertical	3	2	32

Recycler Cooling Signal Transmission

- The Recycler is 3.3km in circumference and oval in shape
- The smallest chord that can be cut from pickup to kicker is about 1/6 of the ring 550 meters
- Transmitting microwave signals over coaxial cable would distort the signal (dispersion, gain slope) that would be extremely difficult to correct with equalizers.
- Instead the signal is transmitted by modulating a free-space laser beam
 - ☐ Microwave signal modulates a solid state laser which is connected to an optical fiber
 - ☐ Light wave is launched from the optical fiber into a telescope
 - ☐ Light wave travels about 550 meters in an evacuated pipe
 - ☐ Light wave is collected by a receiving telescope
 - ☐ Light wave is focused on a wideband photodiode and microwave signal is recovered.

Recycler Cooling Signal Transmitter

Recycler Cooling Signal Receiver

Recycler Free-Space Laser Beam Pipe

